2024年03月29日星期五
动态播报
钛酸锂电池技术在国内外的发展状况
2016年11月28日 11:51:00 来源: 访问:

钛酸锂材料特性及其前沿科学研究

1.Li4Ti5O12的性质

纯相Li4Ti5O12晶体为白色固体具有面心立方尖晶石结构,其常用化合物分子式为AM2O4,空间群:Fd3m,晶胞参数a为0.836nm。在一个晶胞中,所有O2-都占据32e的位置,占总数3/4的Li+位于8a的四配位四面体的中心,占总数1/4的Li+和所有的Ti4+共享16d的六配位八面体的位置。因此,其超结构式可表示为[Li3]8a[Li1Ti5]16d[O12]32e,,或Li4Ti5O12。在充电态当锂离子嵌入时(见图1),嵌入的3个锂离子将汇合原来8a四面体位置的锂一起迁移到原先空缺的16c六配位八面体位,即[Li6]16c[Li1Ti5]16d[O12]32e,或Li7Ti5O12。一个有趣的现象是其晶胞体积在3个锂离子的嵌入前后几乎没有变化,a值从0.836 nm增加到0.837 nm。因此Li4Ti5O12这种被称为“零应变”负极材料的循环寿命是超长的。根据每个超结构可嵌入3个锂离子来计算,Li4Ti5O12的理论可逆比容量为 175 mAh˙g-1。由于Li4Ti5O12嵌锂电位比金属Li的电位要高出1.55V。所以在负极上形成锂枝晶几乎无可能,从而避免了大部分锂离子电池在负极上形成锂枝晶导致内部短路的安全隐患。

(a)图为在放电态的钛酸锂晶胞,其中小球为Li原子在8a四面体位;(b)图为在充电态的钛酸锂晶胞,其中Li在16c八面体位。图中大球形为氧原子,中球为钛原子位于每个八面体位的中心。

2.Li4Ti5O12的制备方法

Li4Ti5O12的制备方法通常有固相法、水热法、溶胶凝胶法、熔盐法等方法。不同的合成方法会导致材料不同的晶体形貌,从而影响其电化学性能。所以合成方法的选择与钛酸锂电池的电化学性能(可逆比容量、倍率及循环性能)之间有着密切的联系。

固相法具有操作简便,易于工业化生产的优点。但固相法要求较高的热处理温度和烧结时间长,能耗大,同时粒径较难控制,均匀性和重现性较差,对钛酸锂的电化学性能影响较大。合成一般是按计量学比例将TiO2与LiOH˙H2O或Li2CO3混合,然后在高温下烧结12~24 h得到产物Li4Ti5O12。为了使原料能够充分混合均匀,可采用球磨等方法进行混料得到理想的粒度分布。

用可溶性钛盐、锂盐为原料在水热条件下可以直接或间接合成Li4Ti5O12。通常在水热法后需要高温烧结,但烧结温度大大降低,烧结时间短。所以与高温固相法相比较,可以在一定程度上降低颗粒的团聚,得到粒度分布较窄颗粒表面均匀的产品。该方法制备可以得到库仑效率高,倍率性能好和循环稳定的钛酸锂材料。

溶胶-凝胶法在制备过程中,反应在液相中进行以达到起始物质的均匀混合,制备出纳米尺寸的化合物,经较短时间的高温烧结,热处理温度较低。通过溶胶-凝胶法制备的材料通常具有较均匀的形貌、较窄的粒径分布,所以其电化学性能较好。但该方法通常需要引入大量有机化合物,使合成过程变得较为复杂,对大规模的工业应用不理想。

熔盐合成法是以一种或多种低熔点的盐类作为反应介质,初始物质能够在低熔点的熔融盐中参加反应,化学反应发生在原子级别。在生成钛酸锂产物形成后,选择适当的溶剂将低熔点的盐类化合物除去,再经过过滤、洗涤和干燥得到目标产物。通常选取硫化锂(LiCl)和氯化钾(KCl)盐等低熔点介质来制备了Li4Ti5O12。反应物在较高温度的熔融液相介质中比在固相介质中具有更快的反应速度,使反应产物得以在较低的温度、较短的时间内完成,同时产物的组分也相对精确,纯度较高。

3.Li4Ti5O12的改性研究

尽管Li4Ti5O12具有安全性髙、循环寿命长等优势,在放电态时,Ti4+缺电子的3d能态具有较宽的能带宽度(2 eV),材料的本征电子导电能力偏低(电导率约为10-13 S/cm),影响了负极在放电状态时的导电率。通过表面包覆或掺杂等方法能提高电极的表面电导率,从而加快传荷反应速率可使电池的倍率性能的增强。

碳包覆不仅能提高钛酸锂材料的电导率,它还能够有效地防止颗粒间的团聚,降低接触内阻,提高电池的倍率性能。此外,由于碳包覆也是一种制备纳米材料的高温处理手段,有助于提高纳米材料的结晶性。可以采用的碳源很多如糖类、聚合物、碳黑、活性碳、碳纳米管、碳纤维等。在钛酸锂制备过程中加入含碳物质,经高温处理时碳及非碳元素热解后,部分剩余的碳将沉积在钛酸锂颗粒表面,实现了表面碳包覆改性。含碳物质在热解时产生的还原性气氛将提高反应物的活性,包覆碳还助于 Li+在颗粒中的扩散。表面的碳层可以抑制颗粒之间的团聚,抑制过大的晶粒生成;同时导电碳层也将增强钛酸锂颗粒与集流体之间的接触,促进电流的传导。其他导电添加剂有银(Ag)、锌(Zn)、铜(Cu)等都被研究用于增加钛酸锂的导电性,加强钛酸锂电池的容量发挥、循环寿命的增加及倍率性能的改善。

采用金属或非金属离子进行体相掺杂也是提高钛酸锂的电化学性能的另一重要途径。不同的掺杂的离子取代Li4Ti5O12会造成Ti4+和Ti3+的混合价态,引入自由电子或电子空穴。由于掺杂离子会进入活性Li4Ti5O12材料体相中,导致晶格体积和晶胞参数变化,进而影响电极电位、可逆容量或循环性能的变化。文献报道的掺杂的离子有镁离子(Mg2+),铝离子(A13+),镓离子(Ga3+),锰离子(Mn3+),铬离子(Cr3+),钴离子(Co3+),镧(La3+),Zn2+,钼离子(Mo4+),铌离子(Nb4+),钒离子(V5+),氟离子(F-)和溴离子(Br-)等。其中,阳离子通常取代晶格中的Li+或Ti4+,而阴离子则占据结构中的O2-位置。典型例子如La3+与F-的协同掺杂促进了钛酸锂的容量发挥。离子掺杂会影响Li4Ti5O12材料的电位,笔者研究小组将Li4Ti5O12在强还原性气氛中处理后,电化学测试显示平台电压下降0.06V,全电池能量密度提升约6%。其后的进一步的研究证明经强还原性气氛中处理后的Li4Ti5O12在晶格中形成了氧空位。目前对于Li4Ti5O12的离子掺杂研究,多数研究集中于离子掺杂后的电化学性能,而对掺杂后的晶体结构变化、界面特性、掺杂离子与本体相的相互作用及影响的了解尚不够深入。所以笔者认为对钛酸锂材料更深层次的机理研究还是大有可为的。


钛酸锂电池技术开发难点及其发展方向



1.在中国发展钛酸锂电池技术的理由

钛酸锂电池技术在我国各种储能电池(如先进铅酸、钠硫、液流钒等电池体系)中的竞争应该占有天时、地利、人和之优势。光就使用寿命而言,钛酸锂电池超长的循环寿命远胜于各类铅酸电池;其效率、成本及电化学性能更是优于钠硫与液流钒等电池体系。锂电产品历年来主要市场是便携式电器如手机和手提电脑等。根据在日本举行的第6届国际充电型电池展,在2015年度全球便携式电器的市场为49119 MWh;而电动车与储能各为7636 MWh和944 MWh。中国的手机与手提(平板)电脑的用量虽大,但大部分都不属国内品牌。所以国内锂电厂家在便携式电器上的锂电销售能力输于日韩产品。其原因笔者近期已有观点发表,在此不再謷述。然而,钛酸锂技术的适用市场却是混合电动车、特殊工业应用及储能应用如调频及电网电压支撑等。这些市场在全世界尚处于起步阶段,谁执牛耳尚未可知。钛酸锂技术有望成为这些市场中的佼佼者。

扫一扫

公交信息网微信公众号
bus_info

关于我们 企业文化 免责声明 广告服务 联系方式
 Copyright © 2007-2019 bus-info.cn Inc. All Rights Reserved. 网站设计备案号:沪ICP备17055837号  沪公网安备31011502010460号